我们知道,牵引逆变器对电动汽车的整体性能和效率起着决定性作用。更仔细地审视逆变器的设计,成本效益和合理的额定功率以及合理的效率水平是面向更广泛市场的电动汽车取得成功的关键因素。在这个层面上,简单地说,我们要评估的是整个驱动任务剖面的最低性能和所需的峰值性能。
这些分析将可以更好地让我们理解哪种半导体技术(Si 或SiC)更适合。
在前面的例子中,80 KW的电机可以执行标准的WLTP 驱动循环,从而满足大多数驾驶要求。如果使用碳化硅来提高汽车的额定功率,那么多余的功率在大多数情况下都会被"闲置"。但是在某些情况下,80 KW可能不足以实现"有趣动感"(运动型)的驾驶体验。因此,可以添加一些硅来提高车辆的峰值性能。例如,硅部件能够额外提供160千瓦的功率。这将使汽车具有非常动感的驾驶加速性能。在另一方面,这些数值可以缩减到40 kW SiC 和80 kW Si,从而实现120kW 的入门级电动汽车功率。
至于如何在牵引逆变器内分配Si 和SiC 芯片,取决于研发设计师。鉴于有多种选择,深入研究一下电力传动系统的配置是很有意义的。
对于动力传动系统,尤其是牵引逆变器,不同的技术方案具有不同的效率、性能和成本优势,如下1~5配置。
单电驱,高性能和长续航要求---大功率碳化硅逆变器
单电驱,适当调整车辆性能---小功率碳化硅逆变器
单电驱,成本优化的解决方案---IGBT逆变器
双电驱,高性能和长续航要求---SIC逆变器作为主驱续航,IGBT 逆变器作为辅驱 提供加速动力
新型电驱,成本优化,高性能和长续航要求----单逆变器中融合SiC+IGBT,SiC维持高效率续航运行,SiC+IGBT 提供峰值搞性能
双电驱的优点众所周知,下图7 对此进行了总结。其设计的初衷,SiC在中小功率等级使用时具有更低的损耗、更高的效率,而IGBT在大功率输出时相对更有优势。为了充分发挥SiC和IGBT 各自的优点,双电驱可以采用不同半导体器件进行搭配。
主驱使用SiC, 保持持续运行且覆盖90%以上的WLTP驱动周期。
辅驱采用IGBT,提供额外的扭矩,以提供4轮驱动能力和最大性能。
在这种配置(图6中 配置2 + 配置3 的组合)中,使用了Si 和SiC 技术,但部署在不同的电驱上。